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Assistive robot arms try to help their users perform everyday tasks. One way robots can provide this assistance
is shared autonomy. Within shared autonomy, both the human and robot maintain control over the robot’s
motion: as the robot becomes confident it understands what the human wants, it intervenes to automate
the task. But how does the robot know these tasks in the first place? State-of-the-art approaches to shared
autonomy often rely on prior knowledge. For instance, the robot may need to know the human’s potential
goals beforehand. During long-term interaction these methods will inevitably break down — sooner or later
the human will attempt to perform a task that the robot does not expect. Accordingly, in this paper we
formulate an alternate approach to shared autonomy that learns assistance from scratch. Our insight is that
operators repeat important tasks on a daily basis (e.g., opening the fridge, making coffee). Instead of relying
on prior knowledge, we therefore take advantage of these repeated interactions to learn assistive policies. We
introduce SARI, an algorithm that recognizes the human’s task, replicates similar demonstrations, and returns
control when unsure. We then combine learning with control to demonstrate that the error of our approach is
uniformly ultimately bounded. We perform simulations to support this error bound, compare our approach
to imitation learning baselines, and explore its capacity to assist for an increasing number of tasks. Finally,
we conduct three user studies with industry-standard methods and shared autonomy baselines, including a
pilot test with a disabled user. Our results indicate that learning shared autonomy across repeated interactions
matches existing approaches for known tasks and outperforms baselines on new tasks. See videos of our user
studies here: https://youtu.be/3vE4omSvLvc

CCS Concepts: • Human-centered computing → Collaborative and social computing; Accessibility.
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1 INTRODUCTION
Imagine teleoperating a wheelchair-mounted robot arm to open your refrigerator door (see Figure 1).
This robot has never interacted with your fridge before: accordingly, for the first few times you
open the fridge, you must carefully guide the robot throughout the entire process of reaching,
grabbing, and pulling the door. But after you’ve interacted with this robot for several weeks — and
opened your fridge many times — an intelligent robot should learn to assist you. The next time you
start teleoperating the arm towards your fridge, the robot should recognize what you want and
partially automate the process of opening the door.
The robot’s assistance in this working example is an instance of shared autonomy. Shared

autonomy for assistive robot arms blends the user’s inputs with autonomous actions so that both
the human and the robot contribute to the robot’s overall motion. When surveyed, disabled adults
who operate assistive robots preferred shared autonomy over either fully autonomous or fully
human-guided systems [7, 23]. In practice, however, today’s shared autonomy approaches rely on
prior information about the human’s tasks. Methods such as [3, 5, 10, 15, 28, 31, 33, 49, 50] require a
pre-defined list of goals the human might want to reach: the robot infers the human’s most likely
goal from these discrete options, and autonomously moves towards that goal. Other approaches
need demonstrations [32, 39, 45], feedback [55], or constraints [8, 9, 16, 57] that specify which
tasks the human might want to perform: the robot then maps the human’s inputs to task relevant
motions, and overrides or corrects inputs that do not align with the robot’s anticipated tasks.
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Fig. 1. User teleoperating an assistive robot arm to open their fridge door. The robot does not have any prior
knowledge about this task; however, the human and robot have completed similar tasks many times before.
Instead of making the human guide the robot through every step of this task, we hypothesize that robot
arms can learn to assist humans and share autonomy by exploiting the repeated nature of everyday tasks.

These existing approaches work well when the user wants to perform a task that the robot
knows a priori. But what happens when the human inevitably wants to complete some new or
unexpected task? Going back to our working example, the robot has no prior information about
opening the refrigerator. When the user teleoperates the robot towards the fridge door, today’s
assistive arms assume that the human has made a mistake: instead of helping for the fridge task,
shared autonomy guides the robot towards one of its known tasks. Even worse, the robot remains
confused — and provides incorrect assistance — no matter how many times the operator tries to
repeat the process of opening the fridge [64].
For assistive arms to be practical across long-term interaction, these robots must be capable of

learning a spectrum of new tasks. This would be extremely challenging if every task was a unique
one-off that the robot had never seen before. But our insight is that, over the many weeks, months,
and years a human operator works with their assistive robot:

Humans constantly repeat tasks that are important in their everyday life.

We emphasize that these repetitions are never exactly the same. Each time the assistive robot
opens the refrigerator it may have a different start position or follow a different trajectory. Hence,
we cannot simply record and playback the motions that the human has shown — instead, we
need to generalize assistance across similar tasks. Applying our insight enables assistive robot
arms to learn to share autonomy by exploiting the repeated interactions inherent within assistive
applications. Here the robot remembers how the user controlled the arm to open the fridge in the
past, recognizes that the user is providing similar inputs during the current interaction, and assists
by autonomously mimicking the behavior that user previously demonstrated. Across repeated
human-robot interactions these assistive arms should learn to share autonomy for tasks that include
not only discrete goals (e.g., reaching a cup) but also continuous skills (e.g., opening a door).

In this paper we propose, analyze, and evaluate our algorithm SARI: Shared Autonomy across
Repeated Interaction. Overall, we make the following contributions1:

1Parts of this work have been previously published in the IEEE/RSJ International Conference on Intelligent Robots and
Systems [34]. Novel contributions include the combination of learning and control (Section 5 and Appendix), experiments
on SARI capacity in Section 6.4, and two user studies in Section 7. This added material provides formal guarantees about
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Capturing Latent Intent.We formalize the problem of sharing autonomy across repeated human-
robot interaction. During each interaction the human has in mind some desired task: we introduce
an end-to-end imitation learning algorithm that learns to recognize the human’s current intent and
provide autonomous assistance without any pre-defined tasks or prior information.
Returning Control when Uncertain. Our approach should assist during previously seen tasks
without overriding the human whenever they try to perform a new task. We introduce a discrimi-
nator to measure the confidence of our learned assistance so that the robot automatically returns
control to the human when it is unsure about what the human really wants.
Analyzing Stability.We combine learning with control theory to bound the error between the
robot’s actual state and the human’s desired state. We theoretically demonstrate that — even in the
worst case — our approach is uniformly ultimately bounded with respect to some radius about the
human’s goal. We derive this radius as a function of the variance in the human’s input commands
and the similarity between previously learned task(s) and the human’s current task.
Comparing to Baselines. We perform experiments with simulated human operators and real
robot arms to demonstrate how each component of our algorithm contributes to its performance.
Within these controlled experiments we compare our approach to state-of-the-art imitation learning
baselines, and test our method’s capacity to learn assistance for an increasing number of tasks.
Conducting User Studies. We assess our resulting algorithm in three separate user studies. The
first two studies were performed with non-disabled users, and the final study is a pilot with a
disabled user who regularly operates wheelchair-mounted robot arms. In these studies we compare
our approach to shared autonomy baselines for tasks that involve discrete goals and continuous
skills. Viewed together, our results suggest that SARI enables the robot to learn to assist for known
and new tasks, leading to higher objective and subjective performance.

2 RELATEDWORK
Our approach learns to share autonomy across repeated human-robot interactionwithout predefined
tasks or offline demonstrations. Our work is motivated by assistive applications where disabled
users teleoperate robot arms on a daily basis. Instead of forcing the user to repeatedly guide the
robot throughout every step of the motion, we learn to recognize the human’s task, imitate their
previous interactions, and arbitrate control between the human and robot.
Application – Assistive Robot Arms. Over 13% of American adults living with physical disabili-
ties have difficulty with at least one activity of daily living (ADL) [62]. Assistive robots — such as
wheelchair-mounted robot arms [1, 4, 11] — have the potential to help users perform these everyday
tasks without relying on caregivers. Recent work on assistive arms has focused on automating
ADLs such as eating dinner [6, 18, 32, 52], getting dressed [13, 17, 53], and manipulating household
objects [12]. For sufficiently simple daily tasks the disabled adult may not require any assistance
from the robot. However, our research takes inspiration from the fact that users need assistance
when performing complex tasks that are repeated on a daily basis (e.g., opening a door). It is mentally
tedious and physically burdensome for the human to precisely teleoperate the robot throughout
each step of these everyday tasks [26]. When surveyed, adults who operate assistive arms indicated
that they prefer to share autonomy with robots [7, 23].
Shared Autonomy. In shared autonomy both the human and robot arbitrate control over the
robot’s motion. We separate related research on shared autonomy into two classes of algorithms
(see Figure 2). First, there are approaches which infer the human’s goal and then partially automate

the performance of our approach, offers a new understanding of how our approach works in practice, and compares our
method’s performance to state-of-the-art baselines with non-disabled users and one disabled adult.
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Fig. 2. We separate prior work on shared autonomy for assistive robot arms into two groups. (Left) Some
methods are given a discrete set of possible goals, and infer the human’s goal from these discrete options.
(Right) Other methods learn to map the human’s joystick inputs to constrained, task-relevant motions.
Although both shared autonomy algorithms help this human reach for the cups, neither can assist the human
for a new, unexpected task (like opening the fridge).

the arm’s motion towards that goal. Second, there are methods which map the human’s inputs to
constrained and task-relevant actions.

Within inference works the robot is given a discrete set of possible goals the human may want
to reach a priori [3, 5, 10, 15, 21, 28, 31, 35, 43, 49, 50]. Based on the human’s teleoperation inputs
so far the robot determines which goal(s) are likely, and takes assistive actions to move towards
the inferred goal(s). For example, Javdani et al. formulate this as a partially observable Markov
decision process where the human’s goal is the latent state and the human’s teleoperation inputs
are observations about that latent goal [31]. We emphasize that this class of algorithms requires
prior knowledge about the human’s tasks (i.e., the location of all the goals the human may want to
reach). In the long-term these priors will inevitably fall short: sooner or later the human will reach
for a goal that the robot did not expect, and the robot will be unable to provide assistance.

Other works on shared autonomy map the human’s joystick inputs to motions that are relevant
for the current task [8, 9, 16, 32, 39, 45, 55, 57]. When the human provides a suboptimal input (e.g.,
an input that moves the robot away from its goal) the robot overrides and corrects this human’s
action. For instance, Reddy et al. [55] learn a reward function from the human and then constrain
the robot to take actions with high long-term rewards, while Broad et al. prevent the human
from taking actions that deviate from the robot’s expectations. Similarly, Losey et al. [39] map the
human’s joystick inputs to latent, task-relevant robot actions that are learned from offline task
demonstrations. Overall, this class of algorithmsmakes sense when the user wants to perform task(s)
that the robot has learned to assist. But if the human attempts to perform a new or unexpected
task, then these constraints become counter-productive: the robot mistakenly overrides the human
and may force them to perform the wrong task.
Beyond these two classes of algorithms we highlight recent shared autonomy work that learns

new tasks during interaction [54, 64]. Here the robot starts with a discrete set of options and tries to
infer the human’s current task. If the human’s inputs do not match any of these known tasks, shared
autonomy stops: the robot returns full control to the human and the human demonstrates their new
task to the robot. This task is then added to the discrete library of options and shared autonomy
restarts at the next interaction. Like [64] and [54] our approach continually learns to assist for new
tasks. However, we do not separate our approach into distinct phases for sharing autonomy or
learning tasks. Instead, our robot learns to assist the human each time the user interacts with the
robot, regardless of whether they are completing a previously seen task or performing a new skill.
Interactive Imitation Learning. Our technical approach builds on interactive and safe imitation
learning [51, 56]. Specifically, we draw connections between shared autonomy and imitation
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learning techniques where the robot and human periodically switch control. Within these settings
the robot attempts to perform the task autonomously; but at times where the human notices that
the robot is making a mistake [30, 37, 42, 60], or in states where the robot is uncertain about what it
should do [27, 44, 46, 63], the human takes over and guides the robot. Across repeated interactions
the robot adds these human corrections to its training data and learns to imitate the human’s
behavior. Here we leverage a similar approach to learn to share autonomy. More specifically, our
technical approach integrates prior work on both interactive imitation learning and representation
learning [25, 36, 39, 41]. We develop representation learning to identify the space of possible tasks,
and then incorporate imitation learning to mimic how the human previously performed these tasks
and provide autonomous assistance.

3 FORMALIZING SHARED AUTONOMY ACROSS REPEATED INTERACTION
Let us return to our motivating example from Figure 1 where the user is teleoperating their assistive
robot arm. Each time the human interacts with the robot, they have in mind a task they want the
robot to perform: some of these tasks are new (e.g., moving a coffee cup), while others the robot
may have seen before (e.g., opening the fridge). We represent the human’s current task as 𝑧 ∈ Z, so
that during interaction 𝑖 , the human wants to complete task 𝑧𝑖 . Within this paper tasks include both
discrete goals and continuous skills: i.e., a task 𝑧 could be reaching the cup or opening a drawer.
We test both types of tasks in our experiments. The assistive robot’s goal is to help the human
complete their current task. However, the robot does not know (a) which task the human currently
has in mind or (b) how to correctly perform that task.
Dynamics. The robot is in state 𝑠 ∈ R𝑑 and takes action 𝑎 ∈ R𝑑 . Within our experiments, 𝑠 is the
robot’s joint position, 𝑎 is the robot’s joint velocity, and the robot has dynamics:

𝑠𝑡+1 = 𝑠𝑡 + Δ𝑡 · 𝑎𝑡 (1)
The human uses a joystick to tell the robot what action to take. Let 𝑎H be the human’s commanded
action — i.e., the joint velocity corresponding to the human’s joystick input2. The robot assists the
human with an autonomous action 𝑎R , so that the overall action 𝑎 is a linear blend of the human’s
joystick input and the robot’s assistive guidance [15, 28, 49]:

𝑎 = 𝛽 · 𝑎R + (1 − 𝛽) · 𝑎H (2)
Here 𝛽 ∈ [0, 1] arbitrates control between human and robot. When 𝛽 → 0, the human always
controls the robot, and when 𝛽 → 1, the robot acts autonomously.
Human. So how does the human choose inputs 𝑎H? During interaction 𝑖 we assume the human
has in mind a desired task 𝑧𝑖 . We know that this task guides the human’s commanded actions;
similar to prior work [31], we accordingly write the human’s policy as 𝜋H (𝑎H | 𝑠, 𝑧𝑖 ). This policy is
the gold standard, because if we knew 𝜋H we would know exactly how the human likes to perform
each task 𝑧 ∈ Z. It’s important to recognize that this policy is highly personalized. Imagine that the
current task is to reach a coffee cup at state 𝑠∗: one human might prefer to move directly towards
the cup with actions 𝑎H ∝ (𝑠∗ − 𝑠), while another user takes a circuitous route to stay farther away
from obstacles. Our approach should personalize, and learn the policy that the current user prefers.
Repeated Interaction. In practice the assistive robot cannot directly observe either 𝑧𝑖 or 𝜋H .
Instead, the robot observes the states that it visits and the commands that the human provides. Let
𝜏 = {(𝑠1, 𝑎1H), . . . , (𝑠𝑇 , 𝑎𝑇H)} be the entire sequence of robot states and human commands that the
2Although we use joysticks for explanation here, our algorithmic framework is not tied to any teleoperation interface.
Users could alternatively control the robot with sip-and-puff devices [28], body-machine interfaces [29], or brain-computer
interfaces [48]. All of these interfaces output a commanded action 𝑎H . To show our method’s ability to generalize, we test
using both a joystick and a web-based GUI in our user studies.
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Fig. 3. Outline of SARI, our proposed algorithmic framework for learning to share autonomy across repeated
interaction. (Left) The robot embeds the human’s behavior 𝜏𝑖 during the current interaction to a distribution
over latent tasks 𝑧. (Middle) The robot then chooses assistive actions 𝑎R conditioned on its state 𝑠 and latent
task 𝑧. The assistive policy 𝜋R is trained to match the user’s behavior from previous interactions. (Right) To
decide whether or not to trust this assistive action, the robot turns to a discriminator C. The discriminator
assesses whether the current interaction 𝜏𝑖 is similar to any previously seen interaction: if so, the robot
increases autonomy. In this example the robot remembers how the human has opened the fridge in the past,
and assists for that task. But when the human does something new (reaching for the cup) the robot realizes
that it does not know how to help, and arbitrates control back to the human.

robot observed over the course of an interaction 3. As the human and robot repeatedly collaborate
and interact, the robot collects a dataset of these sequences: D = {𝜏1, 𝜏2, . . . , 𝜏𝑖−1}. Notice that here
we distinguish the current interaction 𝜏𝑖 . Because the robot only knows the states and human
inputs up to the present time, for the current interaction 𝜏𝑖 = {(𝑠1, 𝑎1H), . . . , (𝑠𝑡−1, 𝑎𝑡−1H )}.
Robot. In settings where an assistive robot arm repeatedly interacts with a human the robot has
access to four pieces of information. The robot knows its state 𝑠 , the start and end of current
interaction (𝜏𝑖𝑠𝑡𝑎𝑟𝑡 , 𝜏𝑖𝑒𝑛𝑑 ∈ 𝜏𝑖 ), the human’s behavior during the current interaction 𝜏𝑖 , and the
events of previous interactions D. Given (𝑠, 𝜏𝑖 ,D), the robot needs to decide: (a) what assistance
𝑎R to provide and (b) how to arbitrate control between the human and robot through 𝛽 . We
emphasize that under this formulation the robot makes no assumptions about either the human’s
underlying tasks or how to complete them — instead, the robot must extract this information from
previous interactions. In practice, the designer may choose to initialize the robot with some tasks
before the assistive arm encounters the current user. Under our formulation this prior information
takes the form of offline demonstrations: the designer could provide interactions Doffline, so that
D → D ∪Doffline. Moving forward, the robot must leverage the available data (𝑠, 𝜏𝑖 ,D) to learn
to share autonomy with the current human operator.

4 LEARNING TO SHARE AUTONOMY ACROSS REPEATED INTERACTION (SARI)
Our proposed approach is guided by the intuition that — if the robot recognizes the human’s
behavior is similar to a previous interaction — the robot can assist the human by imitating that
past interaction. Take our motivating example of opening the fridge door: the next time the human
starts guiding the robot towards this door, the robot should infer which task the human is trying to
perform and then autonomously open the door just like the human. There are three key challenges
to this problem. First, the robot must recognize the human’s task 𝑧𝑖 during the current interaction.
Next, the robot should replicate any previous interactions that are similar to this task. Finally,
the robot must know when it is unsure, and return control to the human if the task is new or
unexpected. In this section we introduce an algorithm to tackle these three challenges (see Figure 3).
We refer to our method as SARI: Shared Autonomy across Repeated Interactions.

3We emphasize that these interactions can be of any length, and that there is no maximum interaction length specified to
the algorithm.



SARI: Shared Autonomy across Repeated Interaction 7

4.1 Recognize: Embedding Interactions to a Latent Space
Our first step is to extract the user’s high-level task 𝑧𝑖 from the robot’s low-level observations.
Recall that the human’s behavior during the current interaction (i.e., their commanded actions at
each robot state) is captured in 𝜏𝑖 . This behavior is guided by the human’s desired task: when the
human wants to open the fridge, they provide commands 𝑎H that move the robot towards that
door, and when the human wants to pick up a coffee cup, they provide a different set of commands
to reach that cup. Accordingly, we leverage 𝜏𝑖 to recognize the underlying task 𝑧𝑖 . More formally,
we introduce an encoder:

𝑧 ∼ E( · | 𝜏𝑖 ) (3)
This encoder embeds the human’s behavior into a probability distribution over the latent space
Z ⊆ R𝑑 . We will learn the encoder model from previous human interactions as described in the
following subsection (4.2).

Our encoder E is analogous to goal prediction from prior works on shared autonomy [3, 5, 10, 15,
28, 31, 49, 50]. In these prior works the robot observes the human’s current behavior 𝜏𝑖 , and then
applies Bayesian inference to predict the human’s goal 𝑧𝑖 . Our encoder E(𝑧 | 𝜏𝑖 ) accomplishes the
same thing: it outputs a distribution over tasks the human may want to complete. The difference
is that — when using Bayesian inference — the robot needs to know the set of possible tasks a
priori. When training the encoder we make no such assumption. Instead, the encoder learns a
distribution over tasks using only past interactions D. However, one practical concern here is that
the robot could convince itself of its own prediction: i.e., because the robot is autonomously moving
towards a goal, the robot might think that goal is increasingly likely [31]. We avoid this loop by
purposely encoding the sequence 𝜏𝑖 . Since 𝜏𝑖 only includes the human’s action 𝑎H (and not the
robot’s assistance 𝑎R ), the robot cannot infer a latent task from its own behavior.

4.2 Replicate: Imitating the Demonstrated Behavior
As the human uses their joystick to teleoperate the robot towards the fridge door, we leverage
our encoder to recognize the human’s task. But what does the robot do once it knows that task?
And how do we train the encoder in the first place? We address both issues by introducing a robot
policy (i.e., a decoder) that maps our task predictions into assistive robot actions:

𝑎R = 𝜋R (𝑠, 𝑧) (4)

The policy 𝜋R determines how the robot assists the human. We want the robot’s policy to imitate
previous demonstrations, so that if the human’s current behavior is similar to another interaction
𝜏 ∈ D, the robot will generalize the human’s actions from that previous interaction.

We accomplish this by training the encoder and policy models using the dataset of previous inter-
actionsD. More specifically, we take snippets of the human’s behavior during previous interactions,
embed those snippets to a task prediction, and then reconstruct the human’s demonstrated behavior.
For some past interaction 𝜏 ∈ D, let b = {(𝑠1, 𝑎1H), . . . (𝑠𝑘−1, 𝑎𝑘−1H )} be the human’s behavior up to
timestep 𝑘 , and let (𝑠𝑘 , 𝑎𝑘H) be the human’s behavior at timestep 𝑘 . We train the encoder and policy
to minimize the loss function:

L = E𝑧∼E( · |b)

𝑎𝑘H − 𝜋R (𝑠𝑘 , 𝑧)
2 (5)

across the dataset D. In other words, we train the encoder from Equation (3) and policy from
Equation (4) so that — given a snippet of the human’s past behavior — we correctly predict the
human’s next action. Equation (5) encourages the robot to mimic the human, so that when the
robot encounters a familiar task, the arm will take autonomous actions that match the commands
which the human previously provided. As a reminder, here the robot is not simply saving and
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replaying the human’s demonstrations: because each interaction is slightly different, the robot is
learning a policy model 𝜋R to generalize the human’s demonstrations to nearby states.
We contrast our policy to trajectory prediction [15, 28] or task constraints [8, 9, 39, 55, 57] from

previous research on shared autonomy. Under these approaches the robot assumes that it knows
the correct way to perform each task; e.g., if the human wants to reach for a cup, the robot assumes
that it should move in a straight line towards that goal. But we know that tasks are personalized,
and different users will complete the same task in different ways. Instead of constraining robot
assistance to a pre-specified task definition, we therefore learn to imitate how the current user
performs each task and train 𝜋R to match the current user’s behaviors.

4.3 Return: Knowing What We Do Not Know
If the human repeats a task that the robot has seen many times before (e.g., opening the fridge), we
can rely on our model to assist the human. But what happens if the human tries to perform a new
or rarely seen task? Here we do not trust the robot’s assistive actions since this task is out of the
robot’s training distribution. In general, deciding where to arbitrate control requires a trade-off: we
want the robot to take as many autonomous actions as possible (reducing the human’s burden), but
we do not want the assistive robot to over-commit to incorrect autonomous actions and prevent
the human from doing what they actually intended.
To solve this problem we take inspiration from recent work on interactive and safe imitation

learning [27, 37, 46, 63]. Our objective is to determine when the robot should trust the collective
output of Equations (3) and (4). Intuitively, if the human’s behavior 𝜏𝑖 is unlike any seen behavior 𝜏 ∈
D we should return control to the human. We therefore train a discriminator C that distinguishes
seen behavior from unseen behavior. Unseen behavior is cheap to produce: we can generate this
behavior by applying noisy deformations to the observed interactions 𝜏 ∈ D [40]. At run time, our
discriminator outputs a scalar confidence over the human’s current behavior, which we then utilize
to arbitrate control between human and robot:

𝛽 ∝ C(𝜏𝑖 ) (6)
In our experiments we implement this as C(𝜏𝑖 ) = C(𝑠𝑡 , 𝑎𝑡H), where (𝑠𝑡 , 𝑎𝑡H) is the most recent
state-action pair from 𝜏𝑖 , and the output of C is normalized using a softmax function [22] to obtain
the arbitration parameter 𝛽 ∈ [0, 1]. Recall that 𝛽 from Equation (2) blends the robot and human
actions 𝑎R and 𝑎H . If 𝜏𝑖 deviates from previously seen input patterns, 𝛽 → 0, and the robot returns
control to the human operator. By contrast, if the discriminator recognizes 𝜏𝑖 as similar to previous
experience, 𝛽 → 1 and the robot arm partially automates its motion.
Continual Learning. During each interaction the robot applies Equations (3), (4), and (6) to assist
the human. But what about between interactions, when the human is not providing any inputs to
the robot? Imagine we train our encoder, policy, and discriminator after the human has collaborated
with the robot for a few minutes. Over the next hour the human will inevitably perform new
tasks. An intelligent assistive robot should also learn these tasks and continuously adapt to the
human. At the end of interaction 𝑖 , we therefore add 𝜏𝑖 to dataset D. We then retrain SARI between
interactions, updating E, 𝜋R , and C. Intermittent retraining enables the robot to continually learn
and refine tasks over long-term interaction.

5 ANALYZING STABILITY WITH SARI
The SARI algorithm we introduced in Section 4 learns to recognize tasks, replicate demonstrations,
and return control. Here we apply stability theory to this learning approach. Specifically, we explore
the performance of SARI when the human attempts to complete a new, previously unseen task. We
know that the robot should recognize its uncertainty and arbitrate control back to the human. But



SARI: Shared Autonomy across Repeated Interaction 9

the robot is also trying to provide assistance and reduce the human’s burden — and if the robot
mistakenly thinks it knows the human’s intent, our systemmay override the user and autonomously
perform the wrong task. For example, in Figure 3 this false positive causes the robot to open the
fridge (a previously seen skill) instead of reaching for the cup (a new and unexpected goal).

Motivated by this failure case, we bound the error between the robot’s final state and the human’s
desired goal. We first start with a single degree-of-freedom system for the sake of clarity, and then
extend our analysis to 𝑑-dimensional robot arms. Overall, we prove that the final state error of a
SARI robot — i.e., the distance between 𝑠 and the human’s goal — is uniformly ultimately bounded.
The radius of this bound is a function of the SARI design parameters, the distance between the
human’s new task and previously seen tasks, and the variance in the human teleoperator’s inputs.
Throughout this section we conduct experiments with simulated humans and simulated or real
robot arms: we find that our theoretical error bounds align with the measured error in these studies.
Finally, we extract practical guidelines that designers can leverage to tune the hyperparameters of
our SARI algorithm.

5.1 Single Degree-of-Freedom System
To more clearly explain our theoretical analysis we start by considering a 1-DoF assistive robot.
Here the state 𝑠 ∈ R, the human command 𝑎H ∈ R, and the robot assistance 𝑎R ∈ R are all scalars.
The human is teaching this robot to reach for static goals4. At every previous interaction the human
teleoperated the robot towards a known goal 𝑔. Now the human changes their mind and attempts
to reach a new goal 𝑔∗. Returning to our motivating example from Figure 3, perhaps the human has
repeatedly teleoperated their assistive arm to open the fridge, and now at interaction 𝑖 the user
wants to pick up a cup.
Robot. During past interactions the human guided the robot towards 𝑔. We assume these past
human actions were sampled from a Gaussian distribution 𝑎H ∼ N

(
(𝑔 − 𝑠), 𝜎2

D)
)
that nosily

moved from 𝑠 to 𝑔. Applying SARI, the robot collects these state-action pairs into sequences
𝜏 = {(𝑠1, 𝑎1H), . . . , (𝑠𝑇 , 𝑎𝑇H)} and a dataset D = {𝜏1, . . . , 𝜏𝑖−1}. The robot then learns to recognize
and replicate the human’s behavior by minimizing Equation (5) across the dataset D. We assume
a best-case robot that learns to perfectly match the human’s past behavior such that the robot’s
assistive policy is 𝑎R ∼ N

(
(𝑔 − 𝑠), 𝜎2

D)
)
. Similarly, this best-case robot learns to return control

such that the discriminator — i.e., 𝛽 in Equation (6) — is the robot’s learned policy evaluated at the
human’s current action:

𝛽 (𝑠, 𝑎H) = 1√
2𝜋𝜎2

D

exp

(
−
(
𝑎H − (𝑔 − 𝑠)

)2
2𝜎2

D

)
(7)

We emphasize that 𝜎D captures the precision and consistency of the human’s previous interactions.
Here 𝜎D → 0 indicates that the human directly guided the robot to the known goal 𝑔, while
𝜎D → ∞ indicates that the human’s past interactions were noisy and imperfect (i.e., the human
may have pressed the joystick in the wrong direction or overshot their goal).
Human. During the current interaction the human reaches for a new, unexpected goal 𝑔∗. As
before, we assume the human follows a Gaussian distribution 𝑎H ∼ N

(
(𝑔∗ − 𝑠), 𝜎2

H)
)
. The standard

deviation 𝜎H captures the precision of the human’s inputs when reaching for this new goal. We
recognize it might be easier (or harder) for the human to teleoperate the robot to the new goal, and
thus 𝜎H does not necessarily equal 𝜎D .

4Our analysis can also be extended to continuous skills by assuming that the human’s goal is the closest waypoint along the
skill’s trajectory.
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Lyapunov Stability Analysis. The desired equilibrium of the human-robot system is 𝑠 = 𝑔∗, i.e.,
we want the robot to move to the human’s new goal. We propose the Lyapunov candidate function:

𝑉 (𝑡) = 1
2
𝑒 (𝑡)2, 𝑒 (𝑡) = 𝑔∗ − 𝑠 (𝑡) (8)

where 𝑒 (𝑡) ∈ R is the error between the robot’s state 𝑠 and the human’s goal 𝑔∗ during the current
interaction. Taking the time derivative of Equation (8), and substituting in the robot’s dynamics
from Equation (1) and Equation (2), we obtain:

¤𝑉 (𝑡) = −𝑎H (𝑔∗ − 𝑠) + 𝛽𝑎H (𝑔∗ − 𝑠) − 𝛽𝑎R (𝑔∗ − 𝑠) (9)

Recall that 𝑎H , 𝑎R , and 𝛽 are all probabilistic quantities. We take the expectation of ¤𝑉 to reach:

E[ ¤𝑉 (𝑡)] = −(𝑔∗ − 𝑠)2 + E[𝛽𝑎H] (𝑔∗ − 𝑠) − E[𝛽] (𝑔∗ − 𝑠) (𝑔 − 𝑠) (10)

Intuitively, we want Equation (10) to be negative so that 𝑉 (𝑡) decreases over time and the human-
robot system approaches equilibrium 𝑒 (𝑡) = 0 in expectation.
For our next steps it is critical to understand the role of the arbitration factor 𝛽 . Recalling that

𝑎H ∼ N
(
(𝑔∗ − 𝑠), 𝜎2

H)
)
, we take the expectation of Equation (7) to reach:

E[𝛽] = 1√
2𝜋 (𝜎2

D + 𝜎2
H)

exp

(
−(𝑔∗ − 𝑔)2

2(𝜎2
D + 𝜎2

H)

)
(11)

This function does not always hold. From our original definition in Equation (8) we remember that
𝛽 ∈ [0, 1], where 𝛽 → 0 corresponds to full human control and 𝛽 → 1 is fully autonomous behavior.
In practice, designers may further limit 𝛽 ≤ 𝛽𝑚𝑎𝑥 , 𝛽𝑚𝑎𝑥 ∈ (0, 1], so that the human maintains a
persistent minimal control over the assistive robot [15, 49, 59]. Accordingly, we here reach two
cases for our stability analysis: (a) when E[𝛽] ≥ 𝛽𝑚𝑎𝑥 and (b) when E[𝛽] < 𝛽𝑚𝑎𝑥 . Below we derive
two separate stability results for both of these cases.
Theorem 1. Consider a 1-DoF robot using SARI. Given the robot’s learned policy is 𝑎R ∼ N

(
(𝑔 −

𝑠), 𝜎2
D)

)
, the human’s current policy is 𝑎H ∼ N

(
(𝑔∗ − 𝑠), 𝜎2

H)
)
, and E[𝛽] ≥ 𝛽𝑚𝑎𝑥 in Equation (11),

the error is uniformly ultimately bounded. The ultimate bound is:

|𝑔∗ − 𝑠 | > 𝛽𝑚𝑎𝑥 · |𝑔∗ − 𝑔| (12)

Proof. Recall that for persistent minimal control we require that 𝛽 ≤ 𝛽𝑚𝑎𝑥 . Since we have E[𝛽] ≥
𝛽𝑚𝑎𝑥 and the system cannot physically exceed 𝛽𝑚𝑎𝑥 , we set 𝛽 = 𝛽𝑚𝑎𝑥 . Accordingly, we have that
E[𝛽] = 𝛽𝑚𝑎𝑥 and E[𝛽𝑎H] = 𝛽𝑚𝑎𝑥 · E[𝑎H] in Equation (10). Rearranging the updated Equation (10),
we find that E[ ¤𝑉 (𝑡)] < 0 when Equation (12) is satisfied. It follows that the human-robot system is
uniformly ultimately bounded [38, 61]. See the Appendix for more details. □

We can intuitively think of Theorem 1 as a false-positive situation: here 𝛽 = 𝛽𝑚𝑎𝑥 and the robot
is fully convinced that the human’s current goal is 𝑔. Fortunately, our SARI algorithm is designed
to prevent false-positives by returning control when the robot is faced with new or previously
unseen behaviors. This leads to our second setting where E[𝛽] < 𝛽𝑚𝑎𝑥 .
Theorem 2. Consider a 1-DoF robot using SARI. Given the same conditions as in Theorem 1, but
now E[𝛽] < 𝛽𝑚𝑎𝑥 , the error is uniformly ultimately bounded. The ultimate bound is:

|𝑔∗ − 𝑠 | > E[𝛽] ·
𝜎2
𝐷

𝜎2
D + 𝜎2

H
· |𝑔∗ − 𝑔| (13)

Proof. Since E[𝛽] < 𝛽𝑚𝑎𝑥 we set 𝛽 = 𝛽 (𝑠, 𝑎H). We now have that 𝛽 depends upon 𝑎H : to compute
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Fig. 4. Error bounds for the 1-DoF system as a function of human noise. All values are in meters. Plots
generated using Equation (12) and Equation (13) with 𝛽𝑚𝑎𝑥 = 1. (Left) For a fixed 𝜎H = 1 we increase 𝜎D .
This captures a human that provided increasingly noisy inputs during past interactions when they were
reaching for the known goal 𝑔. (Right) For a fixed 𝜎D = 1 we increase 𝜎H . This corresponds to a human that
provides increasingly noisy inputs during the current interaction while reaching for the new goal 𝑔∗. We
conclude that 𝜎D and 𝜎H have opposite effects on the theoretical error bound.

E[𝛽𝑎H], we turn to the law of the unconscious statistician (LOTUS) [58]:

E[𝛽𝑎H] =
(𝑔 − 𝑠)𝜎2

H + (𝑔∗ − 𝑠)𝜎2
D√

2𝜋 (𝜎2
D + 𝜎2

H)3/2
exp

(
− (𝑔∗ − 𝑔)2

2(𝜎2
D + 𝜎2

H)

)
(14)

Substituting both Equation (11) and E[𝛽𝑎H] back into Equation (10), we find that E[ ¤𝑉 (𝑡)] < 0
when Equation (13) is satisfied. From this it follows that the human-robot system is uniformly
ultimately bounded [38, 61]. □

Implications for SARI.We here highlight three design guidelines that emerge from the stability
analysis of a 1-DoF system. First, looking at Theorem 1, we find that lower values of 𝛽𝑚𝑎𝑥 lead to a
decreased error |𝑔∗ − 𝑠 |. This aligns with our expectations: when 𝛽 → 0 the human always retains
control and guides the robot without any autonomous intervention. However, smaller values of
𝛽𝑚𝑎𝑥 also limit the maximum assistance the robot can provide, forcing the human to continually
teleoperate the robot arm. Hence, choosing 𝛽𝑚𝑎𝑥 is a trade-off between increased error bounds and
increased human effort.
Second, from Theorem 2 the precision of the human’s previous interactions (𝜎D) and current

interaction (𝜎H) have opposite effects on the error bound (see Figure 4). Humans that accurately
moved to goal 𝑔 will have lower error bounds when reaching for the new goal; i.e., decreasing 𝜎D
reduces the error |𝑔∗ − 𝑠 |. Conversely, after the human starts moving towards the new goal 𝑔∗, noisy
motions are beneficial: increasing 𝜎H reduces the error |𝑔∗ − 𝑠 |. We tie both of these trends back to
the discriminator in Equation (6). When the human’s inputs are easily distinguished from previous
interactions — i.e., when the human takes actions the robot has not seen before — SARI returns
control and the human can reach their new goal.

Finally, by combining Theorem 1 and Theorem 2 we have that the worst-case error occurs when
the human’s new goal 𝑔∗ is close to — but not the exact same as — the human’s previous goal 𝑔. As
|𝑔∗ − 𝑔| increases E[𝛽] → 0 and the error bound in Equation (13) approaches zero. Similarly, when
|𝑔∗ − 𝑔| → 0 we have that |𝑔∗ − 𝑠 | → 0 in both Equation (12) and Equation (13). Our results here
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Fig. 5. Error bound and experimental results for a 1-DoF SARI system. All values are inmeters. Here a simulated
Gaussian human provided 250 demonstrations reaching for their original goal 𝑔. These demonstrations were
used to train the SARI algorithm; at test time the simulated human reached for a series of new goals 𝑔∗

with SARI assistance. For each 𝑔∗ we collected 10, 000 runs — the shaded region is the standard deviation
across these runs. (Center) While reaching for the previous goal 𝑔 and new goal 𝑔∗ the human had noise
𝜎D = 𝜎H = 1. For all choices of 𝑔∗ we have that E[𝛽] < 𝛽𝑚𝑎𝑥 in Equation (11), and thus the theoretical
bound is Equation (13). (Right) We choose 𝜎D = 𝜎H = 0.1 and had two different theoretical error bounds:
When 𝑔∗ is close to 𝑔 then E[𝛽] ≥ 𝛽𝑚𝑎𝑥 and Equation (12) applies; but as 𝑔∗ get farther from 𝑔 we have that
E[𝛽] < 𝛽𝑚𝑎𝑥 , and thus the bound is Equation (13). The bound appears tight when E[𝛽] < 𝛽𝑚𝑎𝑥 and more
conservative when E[𝛽] ≥ 𝛽𝑚𝑎𝑥 .

are consistent with [20], where Fontaine et al. demonstrate that nearby goals are an adversarial
setting for existing shared autonomy algorithms.

Experimental Validation. In our analysis we have made two important assumptions about SARI.
First, we assumed that the robot’s learned policy 𝑎H ∼ N

(
(𝑔 − 𝑠), 𝜎2

D)
)
exactly replicates the

human’s previous behavior. Second, we assumed that the robot’s discriminator learns Equation (7),
i.e., the discriminator outputs the likelihood of the human’s current action under the robot’s learned
policy. In Figure 5 we test both of those assumptions by comparing the theoretical bounds from
Equation (12) and Equation (13) to the experimental behavior of our SARI algorithm.
To generate these plots we simulated a 1-DoF point-mass robot and human operator. The

simulated human repeatedly guided the robot to a known goal 𝑔 with actions 𝑎H ∼ N
(
(𝑔−𝑠), 𝜎2

D)
)
,

and we followed the procedure from Section 4 to train our SARI algorithm on these interactions. The
simulated human then takes actions 𝑎H ∼ N

(
(𝑔∗ − 𝑠), 𝜎2

H)
)
to reach a new goal 𝑔∗ while receiving

SARI assistance. For values of 𝑔∗ where Theorem 2 applies (i.e., when E[𝛽] < 𝛽𝑚𝑎𝑥 ) we find a close
correspondence between Equation (13) and the robot’s measured error 𝑒 (𝑡). For values of 𝑔∗ where
E[𝛽] ≥ 𝛽𝑚𝑎𝑥 it appears that Theorem 1 becomes overly conservative: the experimental error is
consistently lower than Equation (12).

5.2 Multiple Degree-of-Freedom System
So far we have explored the stability and error bounds of a 1-DoF system. We now extend these
results to the general case. Here the state 𝒔 ∈ R𝑑 , the human command 𝒂H ∈ R𝑑 , and the robot
assistance 𝒂R ∈ R𝑑 are all 𝑑-dimensional vectors. To better distinguish that we are working with
vectors we will bold these symbols for this section of the paper. Our problem setup is the same as
in Section 5.1: during past interactions the human guided the robot towards goal 𝒈, and we want to
evaluate error during the current interaction when the human is teleoperating the robot to a new,
previously unseen goal 𝒈∗.
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Assumptions. As before, we assume that the human’s actions during past interactions were
sampled from a multivariate Gaussian distribution 𝒂H ∼ N

(
(𝒈 − 𝒔), ΣD

)
. During the current

interaction the human noisily moves towards their new goal by following the policy 𝒂H ∼ N
(
(𝒈∗−

𝒔), ΣH
)
. We make two key assumptions about SARI. (a) Our approach learns to perfectly recognize

and replicate the human’s past behavior, and provides assistive actions 𝒂R ∼ N
(
(𝒈 − 𝒔), ΣD

)
. (b)

Our discriminator learns to output a scalar 𝛽 that matches the robot’s policy evaluated at the
human’s action 𝒂H . These assumptions are the same as in Section 5.1. We note that the covariance
matrix ΣD captures the human’s noise during past interactions, and ΣH is the noise during the
current interaction.
Lyapunov Stability Analysis. We want SARI to drive the human-robot system towards the
equilibrium 𝒔 = 𝒈∗. We accordingly propose the Lyapunov candidate function:

𝑉 (𝑡) = 1
2
∥𝒆(𝑡)∥2, 𝒆(𝑡) = 𝒈∗ − 𝒔 (𝑡) (15)

Taking the time derivative of Equation (15), plugging in the robot’s dynamics from Equation (1)
and Equation (2), and then taking the expectation, we obtain:

E[ ¤𝑉 (𝑡)] = −𝒆𝑇
(
𝒆 − E[𝛽𝒂H] + E[𝛽](𝒈 − 𝒔)

)
(16)

Our goal here is to find a condition that ensures E[ ¤𝑉 (𝑡)] < 0 so that the human-robot system
approaches equilibrium 𝒆(𝑡) = 0. Importantly, the next steps of our analysis depend on the expected
value of 𝛽 . Given our assumptions about SARI, for a 𝑑-dimensional system we find that:

E[𝛽] = 1√
(2𝜋)𝑑 det Σ

exp
(
−1
2
∥𝒈∗ − 𝒈∥2Σ−1

)
(17)

where Σ = ΣD + ΣH is the sum of the covariance matrices. Recalling that the arbitration factor
𝛽 must be within [0, 𝛽𝑚𝑎𝑥 ], we again reach two two cases for our stability analysis: (a) when
E[𝛽] ≥ 𝛽𝑚𝑎𝑥 and (b) when E[𝛽] < 𝛽𝑚𝑎𝑥 . Below we list the general stability results for each case.

Theorem 3. Consider a 𝑑-DoF robot using SARI. Given the robot’s learned policy is 𝒂H ∼ N
(
(𝒈 −

𝒔), ΣD
)
, the human’s current policy is 𝒂H ∼ N

(
(𝒈∗ − 𝒔), ΣH

)
, and E[𝛽] ≥ 𝛽𝑚𝑎𝑥 in Equation (17),

the error is uniformly ultimately bounded. The ultimate bound is:

∥𝒈∗ − 𝒔∥ > 𝛽𝑚𝑎𝑥 · ∥𝒈∗ − 𝒈∥ (18)

Proof. Since E[𝛽] ≥ 𝛽𝑚𝑎𝑥 we set 𝛽 = 𝛽𝑚𝑎𝑥 . Hence E[𝛽] = 𝛽𝑚𝑎𝑥 and E[𝛽𝒂H] = 𝛽𝑚𝑎𝑥 (𝒈∗ − 𝒔).
Substituting this into Equation (16) and applying the Cauchy–Schwarz inequality, E[ ¤𝑉 (𝑡)] < 0
when Equation (18) is satisfied. It follows that the human-robot system is uniformly ultimately
bounded [38, 61]. See our Appendix for more details. □

Theorem 4. Given a 𝑑-DoF SARI robot under the same conditions as in Theorem 3, but now with
E[𝛽] < 𝛽𝑚𝑎𝑥 , the error is uniformly ultimately bounded. The ultimate bound is:

∥𝒈∗ − 𝒔∥ > _E[𝛽] · ∥𝒈∗ − 𝒈∥ (19)

where _ is the maximum eigenvalue of (ΣD + ΣH)−1Σ𝐷 .

The full proof for Theorem 4 can be found in the Appendix. We highlight that if 𝑑 = 1 and we
have a single DoF robot, then Equation (18) and Equation (19) are equivalent to our univariate
results from Equation (12) and Equation (13). Overall, the SARI error bounds are a function of the
designer’s choice of 𝛽𝑚𝑎𝑥 , the amount of noise in the operator’s joystick inputs, and the distance
between the previous and new goals.
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Fig. 6. Error bound and experimental results for a 3-DoF SARI system. All values are in meters, and ideally
∥𝒔∥ = ∥𝒈∗∥. A simulated Gaussian human provided 25 demonstrations reaching for their original (𝑥,𝑦, 𝑧)
goal position on the Franka robot arm. These demonstrations were used to train the SARI algorithm; at test
time the simulated human reached a series of new goals 𝒈∗ with SARI assistance. For each 𝒈∗ we collected
5 runs. While reaching for the previous goal 𝒈 and new goal 𝒈∗ the human had noise ΣD = ΣH = 1𝑒−4 · 𝐼 ,
where 𝐼 is the identity matrix. For choices of ∥𝒈∗∥ close to 0.56, we have that E[𝛽] ≥ 𝛽𝑚𝑎𝑥 and the bound is
given by Equation (18). As ∥𝒈∗∥ increases beyond 0.57, we find E[𝛽] < 𝛽𝑚𝑎𝑥 and the bound is Equation (19).

Experimental Validation. To support our stability analysis we compared the theoretical error
bounds from Equation (18) and Equation (19) to the actual behavior of our SARI algorithm. We
conducted this study on a Franka Emika Robot arm with a simulated human teleoperator.

The results are shown in Figure 6. The simulated human used a Gaussian policy when reaching
for 𝒈, and we trained SARI using the state-action pairs collected from these interactions. SARI then
assisted the simulated human as they reached towards a previously unseen goal 𝒈∗. We observe a
close correspondence between Equation (19) and the measured error when E[𝛽] < 𝛽𝑚𝑎𝑥 . For goal
positions where E[𝛽] ≥ 𝛽𝑚𝑎𝑥 we find that Equation (18) is conservative, and the actual error is
less than our theoretical bound. Viewed together, our results from Sections 5.1 and 5.2 support our
stability analysis, and suggest that SARI correctly returns control when the human reaches for new
and unexpected goals.

6 SIMULATIONS
We have introduced an algorithm that learns to assist users over repeated interaction. Our algorithm
(SARI) breaks down into three parts: recognizing the task, replicating prior demonstrations, and
returning control when uncertain. In this section we perform simulations to determine how each
component of SARI contributes to its overall performance. We recognize that — in practice — human
operators will use SARI to assist for multiple everyday tasks. Accordingly, we also test the capacity
of our approach, and evaluate how SARI’s performance changes as it encounters an increasing
number of goals and skills. Throughout this section we compare our approach to state-of-the-art
imitation learning baselines that also learn from repeated human-robot interaction. We conduct
these experiments on both simulated and real robot arms with simulated human operators.
Experimental Setup. For different simulations we implement SARI on either a 7-DoF Franka
Emika robot or a 6-DoF Universal Robots UR10 robot. We test with two different arms to show that
our approach is not hardware specific. A simulated user controls the robot to reach discrete goals
(e.g., grasping a can) and perform continuous skills (e.g., opening a drawer). This simulated user is
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Fig. 7. Comparison to DAgger [56], an imitation learning baseline that does not use latent embeddings. A
simulated user controls the robot for the first 0.5 seconds of the interaction: the robot must recognize the
human’s task and complete the rest of the reaching motion autonomously. We measure the final state error
for each goal after training with 3 or 5 repeated interactions. Comparing all DAgger runs to all SARI runs,
we find that the final state error is lower with SARI: 𝑡 (29) = 3.215, 𝑝 < 0.05.

not perfect: the user selects commanded actions 𝑎H with varying levels of Gaussian white noise,
similar to the noisy human models from Section 5. Please see the Appendix for additional details
on our implementation.

6.1 Do We Need Recognition?
In our first experiment we explore whether we need two separate modules for task recognition
and replication. Recall that in Section 4.1 we introduced an encoder which embeds the current
interaction 𝜏𝑖 into a latent task prediction 𝑧 ∈ Z. Within Section 4.2 we then mapped 𝑧 to an
assistive robot actions using 𝜋R (𝑠, 𝑧). Here we test whether we need this encoder in the first place:
in other words, can we obtain similar performance without embedding to latent space Z? We
consider an imitation learning baseline that directly maps the current interaction 𝜏𝑖 to robot actions
𝑎R using a learned policy 𝜋R (𝑠, 𝜏𝑖 ). Specifically, we compare SARI against DAgger [56].

This experiment was performed on the Franka Emika robot arm with a simulated human (see
Figure 7). The environment consisted of three potential goals: a can of soup, a notepad, or a tape
measure. The human first teleoperated the robot along 3 or 5 demonstrations to reach each goal. We
trained SARI and DAgger from these repeated interactions such that both approaches had access
to the same training data. At test time, the human guided the robot for the first 0.5 s of the task:
based on this input, the robot had to (a) recognize which task the human was trying to perform and
(b) automate the rest of the reaching motion. We plot the resulting error between the human’s goal
and the robot’s final state in Figure 7. Comparing the results when trained with 3 or 5 previous
interactions, we find that the robot is better able to provide assistance after additional interactions.
Regardless of whetherDAgger had 3 or 5 demonstrations, however, SARImore accurately reached
the human’s goal given the same simulated human operator. We verify the significance of these
results using a paired t-test (𝑡 (29) = 3.215, 𝑝 < 0.05) over 5 separate trials with DAgger and SARI.
These results suggest that incorporating a separate encoder for task recognition improves the
robot’s assistance.

6.2 Do We Need Help Returning Control?
In our second experiment we explore the opposite end of our pipeline: determining when the
robot should provide assistance. The stability analysis from Section 5 indicates that SARI will
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Fig. 8. Comparison to DropoutDAgger [46], a safe imitation learning baseline where the robot’s learned
policy 𝜋R evaluates its own confidence. Simulated users attempt to lift a glass. Although the robot has seen
this continuous skill 5 times before, with Dropout the robot is overly sensitive to minor deviations from
previous interactions and rarely provides assistance.

return control to the human when the operator is attempting to perform a new task. However, it
is equally important for the robot to retain control (and provide assistance) when it encounters
a known task. Here we test if the robot will correctly recognize a previously seen skill. Recall
that SARI decides whether or not to provide assistance based on the output of the discriminator
from Section 4.3: this discriminator detects if the state-action pairs in 𝜏𝑖 are similar to previous
interactions. Instead of training a separate discriminator, one alternative is to rely on the confidence
of our learned policy itself. Here we turn to prior work on safe imitation learning where the robot
samples its learned policy multiple times at the current state, and assesses the similarity of the
resulting actions 𝑎R . If all of these actions are almost identical, the robot is confident it knows
what to do; conversely, if the model outputs have high variance, the robot is unsure. We therefore
compare SARI to DropoutDAgger [46] (Dropout).
This experiment was performed on a Franka Emika robot arm with a simulated human teleop-

erator (see Figure 8). The simulated human and real robot attempted to complete a continuous
manipulation task where the robot must reach and lift a glass. During test time, the human and robot
shared control throughout the entire interaction using Equation (2). The robot had seen the human
perform this task in five past interactions, and so it should have been confident when providing
assistance. To ensure proper comparison, we train SARI and Dropout on 5 separate trials. We
visualize the robot’s mean actual confidence 𝛽 over these trails in Figure 8. Interestingly, we find
that Dropout is overly sensitive to minor deviations from previous interactions, and incorrectly
returns control to the human even when the robot can still provide useful assistance. SARI remains
confident throughout this known task, suggesting that our separate discriminator better arbitrates
control than the learned policy itself. This is important in practice: human operators will never
perform the same task in the exact same way, and thus the robot must be able to remain confident
on known tasks despite some operator variability.

6.3 What if the Operator is Increasingly Noisy?
So far we have focused on the robot’s perspective, and have tested each component of our SARI
approach. For our third experiment we instead focus on the human, and explore how the behavior
of the human operator affects SARI. We consider simulated humans with different levels of noise as
they attempt to complete previously seen or new tasks. For previously seen tasks, we want to make
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Fig. 9. Simulated humans with increasingly noisy behavior. (Center) The human is always attempting to open
the drawer (a previous seen skill). We find that SARI correctly recognizes and assists for this task despite
noisy and imperfect human teleoperation inputs: 𝑎H ∼ N

(
𝑎∗H, diag(𝜎2, . . . , 𝜎2)

)
. (Right) Simulated users

alternate between a previously seen task (opening the drawer) and a new task (reaching a cup). With No
Assist both new and previous tasks take about the same amount of Human Effort. SARI learns to partially
automate the previously seen task without resisting humans when they try to complete the new task.

sure that the robot continues to provide assistance even as the human becomes an increasingly
noisy and imperfect operator. For new tasks, we recognize that the robot should not resist the human
or force them along a previously seen trajectory. This problem becomes particularly challenging
when the human is noisy, since the robot must determine whether the imperfect human is trying
to repeat the known task or complete a new task.

This experiment was performed on a Franka Emika robot arm with a simulated human teleoper-
ator (see Figure 9). The human provided inputs 𝑎∗H to optimally complete the task, and we then
injected Gaussian white noise with covariance matrix ΣH = diag(𝜎2, . . . , 𝜎2). The environment
contained a previously seen skill (opening a drawer) and a new goal (reaching a cup). SARI was
trained with 5 repeated interactions of the drawer skill; however, SARI had no prior experience
with the cup goal. We compared our approach to a No Assist baseline where the human directly
teleoperated the robot’s end-effector without any shared autonomy. Consistent with prior experi-
ments, we repeat this experiment 5 times and measure the mean Human Effort across these trials.
We define Human Effort as the amount of time the human teleoperates the robot (i.e., the total time
the human is providing joystick inputs) normalized by the average time required to complete the
task. Lower values of Human Effort signify that the robot correctly automated the motion, while
higher values mean that the human had to teleoperate the robot throughout the task.
We first tested the previously seen drawer skill with increasing levels of human noise 𝜎 (see

Figure 9, left). Interestingly, we found that SARI consistently reducedHuman Effort while remaining
robust to this range of 𝜎 . We then had the simulated human alternate between the new and previous
tasks while varying the amount of Gaussian white noise (see Figure 9, right). As expected, SARI
made it easier for the human to repeatedly open the drawer — but on the new task, SARI also
correctly returned control back to the human. Performing the new task took no more effort than
the No Assist baseline; indeed, it often required less human effort. To explain this result, we note
that the start of the cup task was similar to the start of the drawer skill, and thus SARI could
automate the beginning of this motion (resulting in less Human Effort).
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Fig. 10. Capacity to assist for an increasing number of goals. A simulated user repeatedly reached for up to
20 randomly generated goals. The simulated human then teleoperates the robot to reach for all of the goals
it has seen so far using two different methods: Ensemble [47] and SARI. SARI has separate modules to
recognize, replicate, and return, while Ensemble trains multiple replicate modules and returns control when
these policies disagree. Final state error is the difference between the robot’s final state and the human’s
intended goal; the shaded region is the standard error about the mean. SARI maintains roughly constant
performance as the number of goals increases, and consistently has lower error than Ensemble.

6.4 How Many Tasks Can We Learn?
For our final experiment with simulated humans we explore SARI’s capacity to learn goals and
skills. Remember that our motivating application is an assistive robot arm for everyday use: over
long-term interaction, this robot will encounter many repeated tasks for which it should provide
assistance. More formally, the robot observes an increasing number of interactions 𝜏 and aggregates
a growing dataset D = {𝜏1, . . . , 𝜏𝑖 }. Here we test the performance of SARI as it is trained on this
iteratively increasing dataset. We separate the experiment into two parts: in the first environment
the robot encounters an increasing number of goals, and in the second setting the robot must learn
to assist for an increasing number of skills. Ideally the SARI robot will have the capacity to learn
assistance for all of these new tasks, without forgetting or failing to assist for previously seen tasks.

In both parts of this experiment we compare our proposed approach (SARI) to EnsembleDAgger
[47]. Ensemble is an interactive imitation learning approach that trains multiple policies on the
human’s dataset. Unlike SARI — which has separate models to recognize, replicate, and return —
under Ensemble the robot only learns policies 𝜋R (𝑠, 𝜏𝑖 ) that map the human’s behavior directly to
robot assistance. The robot trains an ensemble of these policies and compares their outputs: when
the actions 𝑎R of each policy agree the robot is confident (i.e., higher 𝛽), and when the actions have
high variance the robot is uncertain (i.e., lower 𝛽).
Goals. To explore our method’s capacity to learn goals we simulated a Franka Emika robot arm and
human operator in PyBullet [14] (see Figure 10). At the start of the experiment the simulated human
repeatedly reached for a single goal, and the robot learned to assist for that goal. Next, the human
repeatedly reached for two goals (with new goal positions that were randomly generated), and
we tested the robot’s ability to assist for both goals. Following this pattern, the human iteratively
reached for up to 20 goals; during each iteration we tested the robot’s ability to assist for all the
goals it had observed. This procedure ensures that we are capturing the robot’s performance on
previously seen goals and the new goal after training. To standardize our results, we trained 20
separate SARI and Ensemble models at every iteration. Each individual SARI model assisted the
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simulated human for a single goal 5 times. For Ensemble, we had the ensemble of 20 models assist
the human 100 times; put another way, both methods reached for a given goal 100 total times.
To understand how accurately the human-robot system reached goals, we measured the Final

State Error between the human’s actual goal and the robot’s final state. Our results are shown in
Figure 10. Overall, we observe that both SARI and Ensemble are constant as the number of goals
increases: e.g., the error after learning 10 goals is similar to the error after learning all 20 goals.
But while both approaches have the capacity to learn multiple goals, we find that SARI results in
lower error across the board. Our results here are consistent with Section 6.1, and suggest that the
recognize and return modules in SARI lead to improved performance.

Skills. To explore our method’s capacity to learn continuous skills we paired a simulated Gaussian
human with a real 6-DoF UR10 arm. Here the simulated human attempted to perform kitchen tasks
such as opening a drawer, stabbing a piece of fruit, or pushing a bowl (see Figure 11). Similar to
Goals, we followed an iterative process: first the human and robot repeatedly performed one skill,
then two skills, and so on. At each iteration we evaluated the robot’s ability to assist for all the
skills it had seen so far. We had a total of 8 skills, and to remove any ordering bias we repeated the
experiment twice: once while observing skills 1 → 8, and once while observing skills 8 → 1. To
standardize our results, we trained SARI and Ensemble 20 separate times at each iteration, and
evaluated each model’s performance 5 times per skill.
We measured Regret to understand if human-robot system performed each skill correctly. Let

𝑅∗ (b) be the maximum reward that the system can achieve on skill b ; we define Regret as 𝑅∗ (b) −
𝑅𝑎𝑐𝑡𝑢𝑎𝑙 (b), i.e., the difference between the best-case reward and the robot’s actual reward. Our
results are plotted in Figure 11. Unlike Goals, we find that the system’s performance decreases
as the number of skills increases. There are two reasons for this: (a) skills are more complicated
than goals, and require more assistance than just a straight point-to-point motion and (b) the robot
encounters similar states when performing different skills. This could lead to confusion: if the
robot observes state 𝑠 when pushing the bowl and stabbing the fruit, it is unclear which task the
human is currently attempting to perform (and what assistance the robot should provide). Despite
these challenges, SARI maintains consistently lower regret when compared to the Ensemble
baseline. Overall, our results from both Goals and Skills suggest that SARI has the capacity to
learn assistance for multiple tasks. We recognize that this assistance may degrade as the robot
continues to aggregate new demonstrations, particularly for skills.

7 USER STUDIES
In Sections 5 and 6 we studied the theoretical and practical performance of SARI with simulated
human users. In this section we now turn to user studies with actual participants. Recall that
our target application is assistive robot arms: we want to enable these arms to share autonomy
during everyday tasks. Motivated by this application, we conducted two in-person user studies
with non-disabled participants and one pilot study with a disabled adult who regularly operates
assistive robot arms. To show that our method is not specific to particular hardware, we include two
different robot arms in our experiments. In the first study participants teleoperated a 7-DoF Franka
Emika robot arm, and in the second and third studies they teleoperated a 6-DoF Universal Robots
UR10 robot arm. The non-disabled participants used a handheld joystick interface for teleoperation
(see Figures 1 and 12), while the disabled participant used a web-based interface (see Figure 20).
Additional implementation details for our user studies can be found in the appendix. Video of our
user studies is available here: https://youtu.be/3vE4omSvLvc.

https://youtu.be/3vE4omSvLvc
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Fig. 11. Capacity to assist for an increasing number of skills. A simulated Gaussian human teleoperated the
UR10 robot to perform up to 8 different kitchen skills (e.g., opening a drawer, stabbing a fruit, pushing a bowl).
The simulated human then completed these skills when assisted by either Ensemble [47] or SARI. Regret is
the difference between the maximum possible reward and the robot’s actual reward: lower values of regret
indicate the human-robot system completed the skills correctly. Shaded region indicates standard error about
the mean. Unlike Figure 10, we observe that performance decreases as the number of skills increases.

7.1 Learning Discrete Goals and Continuous Skills
We start with a three part user study that explores known and new tasks as well as discrete goals
and continuous skills. Non-disabled participants started by reaching for known goals, then taught
the robot new skills, and finally returned to the original tasks5. Figures 12, 13, 14, and 15 correspond
to this study. We compared our approach (SARI) to two different state-of-the-art baselines: (a) direct
end-effector teleoperation that is used on commercial assistive robot arms [1, 2] and (b) an existing
shared autonomy algorithm that infers the human’s goal from a discrete set of options [15].

Independent Variables and Experimental Setup. Our first user study was divided into the
three sections described below. Each participant completed every section.
In the first part of the user study participants teleoperated the robot to reach for two discrete

goals placed on the table. These potential goals were known a priori, and the robot had prior
experience reaching for them. Here we compare our proposed approach (SARI) to an existing
shared autonomy baseline (Bayes) [15]. For Bayes we gave the robot prior information about the
location of each goal; during interaction the robot inferred which goal the human wanted and
provided assistance towards that goal. For SARI we repeatedly teleoperated the robot to both
goals during previous, offline interactions (collecting dataset Doffline). We then trained SARI on
this dataset; during interaction the robot used our approach to recognize the user’s goal and assist
the human for that task.

The shared autonomy baseline is the gold standard when the human wants to complete a task the
robot already knows — but what happens during new tasks? In the second part of our user study
participants iteratively performed two new tasks a total of 9 times each. One task was a discrete
goal (reaching a cup), while the other was a continuous skill (opening a drawer). Here we compare
SARI to a No Assist baseline. No Assist is direct end-effector teleoperation, and is an industry
standard approach for assistive robot arms (e.g., pressing right on the joystick causes the robot to
move right) [2]. The No Assist baseline never learns from interactions; but for SARI we retrained

5For video of the first user study, also see: https://youtu.be/Plh4t3wQeIA

https://youtu.be/Plh4t3wQeIA
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Fig. 12. Experimental setup and objective results from the first part of our first user study. Here participants
teleoperated the Franka Emika robot arm to reach for two goals that were known a priori. We compared our
approach (SARI) to a shared autonomy baseline (Bayes [15]) and an industry standard mapping for assistive
arm teleoperation (No Assist [2]). When the robot has prior knowledge about the human’s potential tasks,
we find that SARI learns to offer assistance on par with Bayes, and both methods reduce the human’s effort
when compared to No Assist. Note that Bayes fails to provide helpful assistance when the human wants to
perform new, unexpected tasks (e.g., reaching the cup or opening the drawer), as shown in Figure 13.

our approach every three trials during both tasks. We expect that SARI should increasingly assist
the user as it gets more familiar with these new tasks.

One concern with our approach is that — as the robot continues to encounter new tasks — it will
specialize in just one or two recent tasks without remembering how to share autonomy for older
tasks. Accordingly, in the last part of the user study participants take the final learned model from
both new tasks and use it to revisit the original reaching tasks. Here we compare three conditions:
No Assist, where the human acts alone, SARI (task), the robot’s learned assistance with just the
user’s data from that specific task, and SARI (all), our approach trained on the user’s full dataset
of all interactions.
Dependent Measures – Objective. Across all three parts of the user study we measured Human
Effort. Human effort is the total time the human teleoperated the robot during the task divided
by the average time taken to complete the task. Higher values of human effort indicate that the
human had to guide the robot throughout its entire motion, and lower values indicate that the
robot partially automated the task.
Dependent Measures – Subjective. We administered a 7-point Likert scale survey after users
completed the study (see Figure 15). Questions were organized along five scales: how confident users
were that the robot Recognized their objective, how helpful the robot’s behavior was (Replicate),
how trustworthy users thought the robot was (Return), whether the robot improved after successive
demonstrations (Improve), and if they would collaborate with the robot again (Prefer).
Participants and Procedure. A total of 10 members of the Virginia Tech community participated
in our study (3 female, 1 non-binary, average age 22 ± 7 years). All participants provided informed
written consent prior to the experiment under Virginia Tech IRB #20-755.
Hypotheses. We tested three main hypotheses:

H1. In cases where the robot has prior knowledge about the human’s potential goals, SARI will
perform similarly to a shared autonomy baseline
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Fig. 13. Representative failure case for an existing shared autonomy approach that relies on prior knowledge
(Bayes [15]). Gray circles indicate the human leading the robot, while purple and orange indicate the the
robot is providing assistance. The user attempts to complete the drawer task with end-effector control (No
Assist), with Bayes, and with SARI. None of the methods have prior knowledge about the drawer task;
Bayes only knows about the notepad and tape goals, and SARI has observed six repeated interactions for
the drawer task. The user is able to successfully open the drawer by themselves (top) and with our method
(bottom). With SARI we see that the user is initially leading the robot towards the drawer, but once the robot
recognizes this task, it takes charge and offers appropriate assistance (orange circles). By contrast, Bayes
(middle) mistakes the initial trajectory as towards the notepad, and continually tries to guide the robot to
this known goal. Since both the drawer and the notepad are in front of the robot, the robot is initially able to
move in the correct direction. However, after the user’s inputs diverge from the notepad and go towards the
drawer, the robot gets stuck due to conflicting commands.

H2. In cases where the human repeatedly performs new and previously unseen tasks, SARI will
learn to provide meaningful assistance from scratch
H3. SARI remembers how to assist users on previously seen tasks even after learning new ones

Results. The results from each part of our user study are visualized in Figures 12, 13, 14, and 15. In
the rest of this subsection we summarize our main findings.
In the first part of the user study participants completed a reaching task with Bayes (a shared

autonomy baseline) and SARI (our proposed approach). Here both methods had prior information
about the potential goals: for Bayes the robot was given both goal positions, and for SARI we
recorded offline interactions reaching for each goal. During the user study the robot had to recognize
which goal the human was reaching for (i.e., either the notepad or tape) and then assist the user
while reaching for that target. Our results are shown in Figure 12. To analyze these results we first
performed a repeated measures ANOVA, and found that the robot’s algorithm had a significant
effect on human effort (Notepad: 𝐹 (2, 58) = 106, 𝑝 < .001; Tape: 𝐹 (2, 58) = 36.9, 𝑝 < .001). Post hoc
comparisons revealed that both Bayes and SARI led to less human effort than No Assist, but the
differences between Bayes and SARI were not statistically significant (Notepad: 𝑝 = .370; Tape:
𝑝 = .203). These results suggest that users could reach for known, discrete goals just as easily with
SARI as they could with the shared autonomy baseline.

So SARI is on par with Bayes when the human wants to perform a known task — what happens
when the human wants to complete a new, unexpected task? To highlight one shortcoming of
state-of-the-art shared autonomy approaches and explain why Bayes is not a baseline in the second
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Fig. 14. Objective results from the second and third parts of our user study. (Left) The human teleoperates
the robot to reach for a goal it did not know about beforehand. The first few times they interact, the user
must lead the robot throughout the entire task. After training SARI on six repeated interactions, the robot
recognizes the human’s intent and automates the rest of the motion; by contrast, with No Assist the human
always has to teleoperate the robot. (Center) Across 3 − 6 repeated interactions the robot learns to provide
assistance for a new goal (reaching a cup) and skill (opening a drawer). This assistance reduces the human’s
effort as compared to completing the task alone. (Right) We take our resulting model trained on all user
demonstrations and revisit the original tasks. SARI (all) offers similar assistance to SARI (task), a version of
our approach trained only with the user’s task-specific data. These results suggest our SARI robot has the
capacity learn assistance for new tasks without forgetting older ones.

and third parts of our user study, we illustrate a new task in Figure 13. Here the user attempted to
open the drawer, but the robot only had prior knowledge about the notepad and the tape. Recall
that under Bayes the robot infers which discrete goal the human is trying to reach and then assists
towards that goal [15, 28, 31]. But in this scenario the robot does not know beforehand that the
human may want to open the drawer. As a result, Bayes misinterpreted the user’s inputs and
gradually became convinced that the human’s target was actually the notepad next to the drawer.
This interaction ended in a deadlock: the human constantly teleoperated the robot towards the
drawer, while the robot continually resisted and refused to return control. Note that the trajectories
for SARI and No Assist are similar — the main difference is that in SARI the robot takes the lead
and automates the continuous skill. Moving forward we will focus on new tasks, and will compare
SARI to industry standard teleoperation mappings (No Assist).
In the second part of our user study participants repeatedly teleoperated the robot to perform

new tasks. This includes the drawer skill in Figure 13 and the cup goal in Figure 14. During the
first few interactions SARI returned control and the user guided the robot throughout the entire
task. But after training SARI on 3 and 6 repeated interactions, the robot was able to recognize
and partially automate these new tasks. One user commented that “by the end I didn’t provide any
assistance and the robot continued to move in the correct direction.” We emphasize that — throughout
our entire user study — the robot was never told what task the participant wanted to do. Instead,
the robot had to recognize the participant’s current task based on that user’s joystick inputs. Our
results from Figure 14 suggest that SARI got better at providing assistance for new tasks over
repeated interactions. For example, in the drawer skill the human’s effort was significantly less
with SARI after 6 repeated interactions (𝑡 (29) = 10.5, 𝑝 < .001).

In the final step of the user study we tested the capacity of our approach. We compared SARI
trained on all previous interactions to SARI trained only on interactions for the given task (see
Figure 14). Intuitively, we expected that the more specialized SARI (task) would provide the best
possible performance: this method has only seen data for the current task and therefore cannot
misinterpret the human’s inputs. Our results suggest that SARI can maintain this performance
even when trained with multiple tasks. For three separate goals tasks (cup, tape, and notepad) we
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Fig. 15. Subjective results from our in-person user study. Higher ratings indicate user agreement. Overall,
participants thought SARI provided useful assistance, and they preferred this assistance to trying to complete
the tasks with direct end-effector teleoperation (No Assist). These scores were provided after participants
had completed the entire experiment, including: completing known tasks, assisting for new tasks, and
remembering old tasks.

first conducted repeated measures ANOVAS, and found that the robot’s algorithm had a significant
effect on human effort (Cup: 𝐹 (2, 38) = 51.9, 𝑝 < .001; Tape: 𝐹 (2, 38) = 47.7, 𝑝 < .001; Notepad:
𝐹 (2, 38) = 74.1, 𝑝 < .001). Although our approach consistently outperformedNoAssist, differences
between SARI (task) and SARI (all) were not statistically different (Cup: 𝑝 = .416; Tape: 𝑝 = .876;
Notepad: 𝑝 = .792). We therefore conclude that — similar to our simulations in Figure 10 — SARI
has the capacity to learn assistance for new goals without forgetting how to share autonomy on
previously seen tasks.
Taken together, these results support H1, H2, and H3. Our approach leveraged repeated in-

teractions to learn to share autonomy across new and old tasks that included discrete goals and
continuous skills. Participants generally perceived the robot’s assistance as helpful. Looking at the
subjective results from Figure 15, users thought the robot correctly recognized their intent, made
the task easier to complete, and got better at providing assistance over the course of the study.

7.2 Offering Meaningful Assistance and Returning Control
In the previous user study we focused on the robot’s ability to learn discrete goals and continuous
skills. In our second user study we now focus on the effectiveness of the assistance offered by
the robot on known tasks and its ability to return control on new tasks. Figures 16, 17, 18, and 19
correspond to this study. We compare our proposed approach with a previously seen baseline (No
Assist) and a new state-of-the-art shared autonomy algorithm (CASA) [64]. Similar to our method,
CASA learns to assist users using previous demonstrations.

Experimental Setup. Each participant teleoperated a Universal Robots UR10 robot arm to complete
three continuous skills (see Figure 16): picking up a lemon and dropping it in a pan (Drop), picking
up a can of soup and pouring it in a pan (Pour), and picking up a spatula and stirring the pan using
a circular motion (Stir). We emphasize that these tasks are continuous skills that cannot be easily
reduced to a series of goals. To ensure that the human’s actions can always steer the robot, we limit
the robot’s assistive action by restricting the robot’s confidence (𝛽𝑚𝑎𝑥 = 0.6).
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Fig. 16. Three tasks used in the second user study. (Top) During Drop users picked up a lemon from the
table, moved it to the center of the pan, and then dropped it into the pan. (Middle) During Pour users picked
up a can of soup, moved it to the center of the pan, and then poured the soup in the pan. (Bottom) During
Stir users fetched a spatula that was placed on a hook, moved towards the top of the pan, and then stirred
the pan in a circular motion. All three tasks are continuous skills and were not broken into smaller subtasks.
Users completed each task with all three methods (No Assist, CASA, and SARI).

The experimental procedure trades-off between teaching new tasks and then repeating known
tasks. First, users completed Drop with a robot that was pre-trained only on the Drop task6. Then
— using the same assistive models — users completed Pour: during this interaction the robot knew
Drop while Pour was an unknown task. Next, users completed Pour with a robot that was trained
on demonstrations for both Drop and Pour. Following the same pattern, users completed the new
Stir task. Here the known tasks are Drop and Pour and the unknown task is Stir. Finally users
completed Stir with a model that was trained on all three tasks. Users attempted each known and
unknown task with every method three times. Overall, each individual user provided a total of 27
demonstrations for the three known tasks and 18 demonstrations for the two unknown tasks.
Independent Variables. Participants completed each known and unknown task three times with
each method. We then compared the robot’s assistance on known tasks and its ability to return
control on unknown tasks across three different methods: No Assist, CASA, and SARI. No Assist
did not offer any type of assistance to the users, while CASA and SARI learned to offer assistance.
More specifically, CASA learns cost functions and policies for each new task using Guided Cost
Learning [19], and then infers which (if any) of the tasks the human is attempting to complete [64].
Unlike CASA, our method (SARI) directly matches the human’s past behaviors without inferring
a cost function or learning a policy to minimize that cost.
Dependent Measures – Objective. For known tasks we measured Operating Time and Opposing
Time, and for unknown tasks we plot Total Time and Mean Confidence. Here Operating Time is the

6In the interest of time, all models for SARI and CASA were trained using expert demonstrations. SARI required < 10
minutes per model to be fully trained while CASA required over 8 hours per model.
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fraction of total time that the human provides input to the robot and Opposing Time is the fraction
of total time where the dot product between the human’s action and the robot’s action is negative
(i.e., the fraction of time where the robot’s assistance is not aligned with the human’s commands).
Total Time is the time required to complete a task in seconds, and Mean Confidence measures the
robot’s average confidence 𝛽 while the human is performing a task. When the user is performing a
known task, lower Operating Time and Opposing Time indicate that the robot is offering meaningful
assistance to the user. In the case of unknown tasks, lower Total Time and Mean Confidence indicate
that the robot realizes its uncertainly and correctly returns control to the user.
Dependent Measures – Subjective. Similar to the study in Section 7.1 we administered a 7-point
Likert scale survey (see Figure 19). Questions were organized along four scales: how confident users
were that the robot Recognized their objective, how helpful the robot’s behavior was (Replicate),
how trustworthy users thought the robot was (Return), and if they would collaborate with the
robot again (Prefer). Users answered questions related to Recognize, Replicate, and Return after
completing each task with each method. At the end of the experiment (after trying each approach)
users selected which of the three algorithms they Preferred.
Participants and Procedure. We recruited 10 non-disabled members from the Virginia Tech
community to participate in our study (5 female, average age 27±4 years). All participants provided
informed written consent prior to the experiment under Virginia Tech IRB #20-755. We used a
within-subjects design and counterbalanced the order of the learning algorithms between subjects.
Before the user study started each participant was given 10 − 15 minutes to teleoperate the robot
and familiarize themselves with the controls. The participants in this user study did not take part
in the previous experiment from Section 7.1.
Hypotheses. We tested two main hypotheses:

H4. For previously seen tasks, SARI will better assist than CASA or No Assist
H5. For new tasks, SARI will better return control to humans than CASA

Results – Objective. The objective results from our second user study are shown in Figures 17, 18
and 19. We separate our findings into two categories: performance when the robot has seen the
task before (known) and performance when the task is new (unknown).
Known tasks: Results for the known tasks are shown in Figure 17. We performed a one way ANOVA
to analyze these results. Post hoc comparisons revealed that across all three tasks SARI reduced the
Operating Time significantly more thanNo Assist or CASA (Drop: 𝐹 (2, 87) = 311.0, 𝑝 < .001; Pour:
𝐹 (2, 87) = 278.7, 𝑝 < .001; Stir: 𝐹 (2, 87) = 95.3, 𝑝 < .001). We also observed that the Opposing Time
for SARI across all three tasks was significantly lower thanCASA (Drop: 𝐹 (2, 87) = 368.6, 𝑝 < .001;
Pour: 𝐹 (2, 87) = 347.4, 𝑝 < .001; Stir: 𝐹 (2, 87) = 349.6, 𝑝 < .001). Note thatNo Assist never opposes
since the human is always in control.
Unknown tasks: Results for the unknown tasks are shown in Figure 18. Remember that participants
first performed Pour while the robot had only seen Drop, and then they first performed Stir while
the robot was trained on Drop and Pour. Hence, here we do not expect the robot to assist the
human: instead, the robot should recognize that the human is completing a new task and return
control to the operator. We performed a one way ANOVA to analyze our results and determine
whether the robot correctly returned control. We found that CASA increased the Total Time
required to complete both tasks (Pour: 𝐹 (2, 87) = 16.6, 𝑝 < .001; Stir: 𝐹 (2, 87) = 25.437, 𝑝 < .001).
CASA increased the total time because this robot mistakenly thought the human was attempting
to perform a known task rather than the unknown task. See the Mean Confidence: the maximum
allowed mean confidence was 0.6, and CASA is close to this maximum confidence for both tasks
(i.e., the CASA robot was almost entirely convinced it was performing a known task). Using paired
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Fig. 17. Objective results for the known tasks in our second user study. Operating Time is the fraction of
the total time where the human provides input to the robot, and Opposing Time is the fraction of total time
where the robot’s actions are antagonistic to the human’s input. Note that No Assist has no Opposing Time
since the in this method the human is always in control of the robot. We find that SARI offers the most
meaningful assistance for all three known tasks by reducing both the Operating Time and Opposing Time
for the human. We performed a one way ANOVA analysis and found that the differences between CASA
and SARI for both Operating Time and Opposing Time are significant (Drop: 𝐹 (2, 87) = 368.6, 𝑝 < .001; Pour:
𝐹 (2, 87) = 347.4, 𝑝 < .001; Stir: 𝐹 (2, 87) = 349.6, 𝑝 < .001).
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Fig. 18. Objective results for the unknown tasks in our second user study.Mean Confidence is the robot’s
average confidence 𝛽 . Since these tasks are new to the robot, the robot should not be confident: ideally both
Total Time andMean Confidence will be minimized. No Assist always has zero confidence since the human is
always in control of this robot. We observe that CASA significantly increased the Total Time required by the
human to complete these tasks (Pour: 𝐹 (2, 87) = 16.6, 𝑝 < .001; Stir: 𝐹 (2, 87) = 25.437, 𝑝 < .001). This increase
in Total Time can be attributed to the high Mean Confidence CASA maintains (i.e., CASA incorrectly thinks
it knows the task). By contrast, the SARI robot recognizes that it does not know the human’s current task
and correctly returns control so the human can act without interference.

𝑡-tests we found that the mean confidence was significantly lower for SARI as compared to CASA
(Pour: 𝑡 (29) = 40.928, 𝑝 < .001, Stir: 𝑡 (29) = 40.928, 𝑝 < .001).
Results – Subjective.We display the user’s subjective responses to each algorithm in Figure 19.
After confirming that the scales were reliable (Cronbach’s 𝛼 > 0.7), we grouped each scale into a
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Fig. 19. Subjective results for our second in-person user study. Similar to Figure 15, higher ratings indicate
user agreement. Overall, participants found that SARI was able to better recognize their task and offer
meaningful assistance. Additionally, a majority of users preferred using SARI over both CASA andNo Assist.
Scores for Recognize, Replicate, and Return were obtained after participants completed each task with each
method. For Prefer we asked participants to select their favorite algorithm at the end of the experiment: 9
out of 10 users chose SARI. All differences shown here are statistically significant (𝑝 < .01)

single combined score and performed a one-way ANOVA on the results. We observe that across all
three tasks users reported that SARI best recognized their task (𝐹 (2, 177) = 275.6, 𝑝 < .001) and
replicated their demonstrations to offer the most meaningful assistance (𝐹 (2, 177) = 406.8, 𝑝 < .001).
When it came to returning control,No Assistwas the gold standard; remember that for this method
the human was always in control. However, here SARI was rated as significantly better than
CASA (𝐹 (2, 117) = 102.7, 𝑝 < .001). Overall, 9 of the 10 participants indicated that SARI was their
preferred method for sharing autonomy with the robot.

7.3 Assisting Users with Disabilities
In our third and final pilot study we explore how our approach assists a disabled user who operates
robot arms on a daily basis. Similar to Section 7.2, the participant interacted with a robot arm that
either (a) did not provide any assistance, (b) assisted using the state-of-the-art CASA approach [64],
or (c) assisted using our proposed SARI algorithm. This pilot study was conducted remotely: the
participant observed the robot in real-time through a live video feed, and remotely teleoperated
the robot using a web-based GUI (see Figure 20).
Experimental Setup and Independent Variables. The participant teleoperated the Universal
Robots UR10 robot arm to perform two tasks from Section 7.2: Drop and Pour. The robot had
expert demonstrations for both tasks (i.e., both tasks were known by the robot). Over a one hour
session we collected a total of 6 demonstrations across all tasks and methods from the participant.
We compared the effectiveness of the robot’s assistance when using No Assist, CASA, or SARI.
Dependent Measures.We measured Operating Time, Opposing Time, andMean Confidence. Recall
that Operating Time is the the fraction of total time where the human is providing inputs to the
robot, Opposing Time is the fraction of total time where the human and robot actions are in opposite
directions, and Mean Confidence is the robot’s average confidence that it should provide assistance
(𝛽). Since the robot is performing known tasks, an ideal system will maintain highMean Confidence,
partially automate the motion, and reduce Operating Time and Opposing Time.
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Fig. 20. Experimental setup and objective results for our remote user study with one disabled participant.
(Left) The participant used a web-based GUI to teleoperate the robot. The GUI was designed to mimic
commercial interfaces [2] and enabled the user to control the robot’s end-effector velocity. (Center) We show
one of the two camera angles that were streamed in real-time to the remote participant. (Right) Over the
course of a one hour session the user completed Drop and Pour tasks (see Figure 16). Across both tasks
SARI reduced the Operating Time by maintaining a high Mean Confidence and low Opposing Time. These
results suggest that SARI can assist adults who regularly use wheelchair-mounted robot arms.

Participants and Procedure.We recruited one remote participant for this pilot study. The par-
ticipant provided informed written consent under Virginia Tech #20-755. Since this user study
was conducted online, the participant used a web-based GUI to control the robot (see Figure 20).
This GUI includes a table of buttons to control the position and orientation of the end-effector:
we designed the GUI to mimic online interfaces for commercial wheelchair-mounted robot arms
[2]. The participant moved their cursor and pressed buttons on the GUI using a joystick that
was integrated with their wheelchair. For the first 15 minutes of the experiment the participant
familiarized themselves with our robot, environment, and controls. During this time we also worked
with the participant to find the best camera placements.
Results. Figure 20 presents our results. Remember that the robot is performing a task that it
has seen before; ideally the assistive robot will realize this is a known task and help the user.
We observed that — similar to the previous user study — both CASA and SARI reduced the
Operating Time. However, we also noticed that across both tasks SARI provided better assistance
by maintaining highMean Confidence and keeping the Opposing Time to a minimum. While we only
had one participant in this pilot study, the results obtained suggest that SARI can offer meaningful
assistance to our target population without requiring pre-defined tasks.

8 CONCLUSION
State-of-the-art shared autonomy algorithms often rely on prior knowledge: e.g., the robot needs
to know all of the human’s potential tasks a priori, or the robot is constrained to actions that assist
for previously seen tasks. In this paper we introduce an alternate framework for shared autonomy
that leverages the repeated nature of everyday human-robot interaction. Our insight is that — if
an assistive arm is teleoperated through similar tasks many times — the robot should learn to
partially automate those tasks. Our approach (SARI) contains separate models that (a) learn to
recognize the human’s current task, (b) replicate the human’s behavior from past task-related
interactions, and (c) return control back to the human when the robot is unsure. We leveraged
stability analysis that combines learning with control to demonstrate that the error between the
human’s goal and the SARI robot is uniformly ultimately bounded. We then conducted simulations



30 A. Jonnavittula et al.

to support our theoretical error bounds, compare our approach to interactive imitation learning
baselines, and explore the capacity of SARI to learn new tasks. Finally, we performed three user
studies to demonstrate that SARI assists for both discrete goals and continuous skills, shows greater
ability to recognize tasks and return control, and provides meaningful assistance to users with
disabilities. Overall, our theoretical and experimental analysis suggests that SARI personalizes to
the current user, and can learn to share autonomy for the tasks that user often performs.
Limitations. So far we have focused on how assistive robot arms can adapt to their human users.
But as the robot arm gets better at sharing autonomy, the human will also co-adapt and modify
their own teleoperation strategy. For example, once the human is confident the robot recognizes
their current task, the user may stop providing joystick inputs and rely on the robot entirely. One
approach to circumvent this issue is by only storing interactions if the human provides corrective
actions. However, this co-adaptation is not explicitly accounted for in our approach.

Another potential limitation of SARI may be its capacity. From Section 6.4 we recognize that the
robot’s assistance decreases as the number of skills increases. More generally, it may not be feasible
for a single model to learn assistance for all of the human’s everyday tasks. One practical solution
is switching models depending on context. For example, we could train one instance of SARI to
assist for cooking tasks, and another instance of SARI to assist for dining tasks. During run-time
the robot selects which SARI models to use based on the current context (e.g., cooking or eating).

9 APPENDIX
9.1 Details for Error Bounds from Section 5
Below we provide additional details for the error bounds that were presented in Section 5.
Derivation of Equation 11. From Equation (7) we know that the arbitration constant 𝛽 (𝑠, 𝑎H) is
defined as:

𝛽 (𝑠, 𝑎H) = 1√
2𝜋𝜎2

D

exp

(
−
(
𝑎H − (𝑔 − 𝑠)

)2
2𝜎2

D

)
Taking into consideration that 𝑎H ∼ N

(
(𝑔∗ − 𝑠), 𝜎2

H)
)
and recalling that the law of the uncon-

scious statistician (LOTUS) [58] states that for a function 𝑔(𝑋 ) of a random variable𝑋 , the expected
value E[𝑔(𝑋 )] =

∫ ∞
−∞ 𝑔(𝑥) 𝑓𝑋 (𝑥) 𝑑𝑥 , where 𝑓𝑋 (𝑥) is the probability density function of 𝑋 . We take

the expectation of Equation (7) and substitute the above to obtain:
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Upon further simplification we obtain:
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Derivation of Equation 14.When taking the expectation of E[𝛽𝛼H], we utilize LOTUS to obtain:
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Upon simplification we obtain:

E[𝛽𝑎H] = 1
2𝜋𝜎D · 𝜎H

∫ ∞
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H

)
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By solving for the integral in Equation (21) we obtain Equation (14).
Derivation of Equation 17. Recall that:

𝛽 (𝒔, 𝒂H) = 1
(2𝜋)𝑑/2 |𝚺D |1/2

exp
(
−1
2
· (𝒂H − (𝒈∗
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− 𝒔))
)

(22)

We rewrite Equation (22) using the canonical parameterization as:

𝛽 (𝒔, 𝒂H) = exp
(
bD + 𝜼𝑇D · 𝒂H − 1

2
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H
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)
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−1
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−1
D (𝒈∗ − 𝒔), and bD = − 1
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−1
D𝜼D). To compute

E(𝛽), we utilize LOTUS:
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Upon further simplification we obtain:

E[𝛽] =
∫ ∞

−∞
exp

(
b𝐷 + b𝐻 − b + b + 𝜼𝑇 𝒂𝒉 −

1
2
𝒂𝑇𝒉𝚲𝒂𝒉

)
where 𝚲 = 𝚲𝑫 + 𝚲𝑯 , 𝜼 = 𝜼𝑫 + 𝜼𝑯 , and b = − 1

2 (𝑑 log 2𝜋 − log |𝚲| + 𝜼𝑇𝚲−1𝜼). With substitution
and simplification we obtain:

E[𝛽] = 1
(2𝜋)𝑑/2 |𝚺D + 𝚺H |1/2

exp
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−1
2
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)
(23)

Equation (23) can be simplified and rewritten as Equation (17).
Proof for Theorem 4. Because we have assumed that E[𝛽] < 𝛽𝑚𝑎𝑥 , we set 𝛽 = 𝛽 (𝑠, 𝒂H). Note
that 𝛽 depends upon 𝒂H . We transform 𝛽 (𝑠, 𝒂H) using the canonical parameterization and apply
LOTUS to compute the expectation as:

E[𝛽𝒂H] =
∫ ∞

−∞
𝒂H exp
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2
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Upon further simplification and reparameterization we obtain:

E[𝛽𝒂H] = (𝚺𝐻 + 𝚺𝐷 )−1 (𝚺𝐷 (𝒈∗ − 𝒔) + 𝚺𝐻 (𝒈 − 𝒔))
(2𝜋)𝑑/2 |𝚺𝐷 + 𝚺𝐻 |1/2

exp
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2
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(25)

This can be rewritten as:

E[𝛽𝒂H] =
Σ−1 (ΣD (𝒈∗ − 𝒔) + ΣH (𝒈 − 𝒔)

)√
(2𝜋)𝑑 det Σ

· exp
(
−1
2
∥𝒈∗ − 𝒈∥2Σ−1

)
(26)

where Σ = ΣD + ΣH . Substituting Equation (17) and Equation (26) back into Equation (16), we have
E[ ¤𝑉 (𝑡)] < 0 when:

∥𝒈∗ − 𝒔∥2 > E[𝛽] · (𝒈∗ − 𝒔)𝑇 Σ−1ΣD (𝒈∗ − 𝒈) (27)
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Here we apply the Cauchy–Schwarz inequality to obtain:

∥𝒈∗ − 𝒔∥2 > E[𝛽] ∥𝒈∗ − 𝒔∥ · ∥Σ−1ΣD (𝒈∗ − 𝒈)∥ (28)

From the spectral theorem we know that ∥𝐴𝑥 ∥ ≤ _𝑚𝑎𝑥 (𝐴)∥𝑥 ∥, where _𝑚𝑎𝑥 (𝐴) is the largest
eigenvalue of the positive semidefinite matrix 𝐴. We substitute this inequality in Equation (26) to
obtain a more relaxed constraint. Specifically, we find that E[ ¤𝑉 (𝑡)] < 0 if the following inequality
holds:

∥𝒈∗ − 𝒔∥2 > ∥𝒈∗ − 𝒔∥ · _E[𝛽] · ∥𝒈∗ − 𝒈∥ (29)
where _ is the maximum eigenvalue of Σ−1Σ𝐷 . Rearranging this result yields Equation (19). We
conclude that E[ ¤𝑉 (𝑡)] < 0 when Equation (19) is satisfied, and it therefore follows that the human-
robot system is uniformly ultimately bounded.
Ultimate Bounds. In our proofs for Theorems 1–4 we have shown that the SARI system is
uniformly ultimately bounded, and we have listed the ultimate bounds. However, we have not
formally demonstrated why Equations (12), (13), (18), and (19) are the ultimate bounds. Here we
provide a more rigorous derivation for these results. We focus on Theorem 4, but the same approach
applies to each of our Theorems.
Recall from Equation (15) that the Lyapunov candidate function depends on the error 𝒆, and

remember that 𝒆 = 𝒈∗ − 𝒔. Let 𝛼1 and 𝛼2 be two class ^ functions such that:

𝛼1
(
∥𝒆∥

)
≤ 𝑉 (𝒆) ≤ 𝛼2

(
∥𝒆∥

)
(30)

Here the ultimate bound on error 𝒆 can be taken as [38]:

𝑏 = 𝛼−1
1

(
𝛼2 (`)

)
(31)

where ` > 0 is selected such that E[ ¤𝑉 (𝑡)] < 0 for all ∥𝒆∥ > `. Looking back at Equation (19) and
the previous proof from the Appendix, we have already identified ` = _E[𝛽] · ∥𝒈∗ − 𝒈∥. We now
propose 𝛼1 = 𝛼2 = 1

2 ∥𝒆∥
2. These choices are valid because (a) they satisfy Equation (30) and (b)

they are class ^ functions. Plugging `, 𝛼1, and 𝛼2 back into Equation (31), the ultimate bound is:

𝑏 = _E[𝛽] · ∥𝒈∗ − 𝒈∥ (32)

Intuitively, this result means that the expected error between the human’s new goal 𝒈∗ and the
robot’s state 𝒔 will eventually become smaller than 𝑏, and will remain smaller than 𝑏 for the rest of
the interaction [61].

9.2 Implementation Details
Our code can be found here: https://github.com/VT-Collab/repeated-shared-autonomy.
Data collection. Across all three user studies we record the robot’s state and the human’s actions.
Depending on the task, we collect the robot’s joint positions, robot’s Cartesian position, state of
the gripper, current mode of teleoperation (rotation or translation), and current mode of operation
(fast or slow mode). In-person users utilized the joysticks on a Logitech Gamepad F310 controller
to provide their inputs. Since the controller is equipped with only two joysticks, users can toggle
between translational and rotational inputs using one of the buttons on the controller. Remote users
used a web-based GUI that had individual buttons that could be used to command translational
and rotational velocities. This GUI also had additional buttons to open and close the gripper, and to
speed up or slow down the robot. The inputs from the joystick and the web GUI are converted into
a 6-D vector of velocity inputs and stored as the human’s current action.
Data augmentation.We augment the data we receive from the demonstrations using Gaussian
noise. We create 5 additional samples for each sample we collect by injecting Gaussian noise with

https://github.com/VT-Collab/repeated-shared-autonomy


SARI: Shared Autonomy across Repeated Interaction 33

zero mean and a small variance. We use this augmented data to train our method as well as all the
baselines that require human demonstrations for training.

Deformations for the discriminator. To create samples that represent unseen behavior for our
discriminator, we randomly apply a small force to the demonstrations we collected from the human.
This force alters the start, end and the shape of the initial trajectory. We use previous work by [40]
to generate these deformations. Additional details on our implementation can be found in our code.

Network architecture. We use fully connected networks for the encoder, decoder and the dis-
criminator in our method. While we varied the number of hidden layers and the number of neurons
in each layer throughout the project, we found the best results when our encoder consisted of 5
hidden layers, the decoder consisted of 4 hidden layers, and the discriminator consisted of 4 hidden
layers. Additional information on our specific implementations can be found in the code repository.

Computational Requirements. Throughout the project we use various versions of Pytorch and
Python in our environment. Most of our experiments were run on an Intel PC with an i7-8559U
processor and 32GB of RAM. We store the human interaction data as Python pickle files and each
interaction requires 72kB of memory. Our Pytorch models were also saved as pickle files and
required 42.7kB of memory. No GPU was used for our experiments.

Baselines. For DAgger-based baselines we use fully connected networks similar to our method.
For DropoutDagger we use dropout probability of 0.1 and for EnsembleDagger we train and use
an ensemble of 20 models. To obtain the network’s confidence (𝛽) we scale the variance within
the model’s action for DropoutDagger and variance between models for EnsembleDagger with a
constant value. This constant is obtained by tuning the robot’s performance while performing a
learned task. For CASA we use a combination of Guided Cost Learning (GCL) and Soft-Actor Critic
(SAC) [24]. We implement SAC in-house and modify a pre-existing repository for training using
GCL. The original repository can be found here: https://github.com/NinaWie/guided-cost-learning,
and our specific implementation can be found in our code repository.
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